Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 333, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491117

RESUMO

Optimal foraging theory predicts that animals maximise energy intake by consuming the most valuable foods available. When resources are limited, they may include lower-quality fallback foods in their diets. As seasonal herbivore diet switching is understudied, we evaluate its extent and effects across three Kenyan reserves each for Critically Endangered eastern black rhino (Diceros bicornis michaeli) and Grevy's zebra (Equus grevyi), and its associations with habitat quality, microbiome variation, and reproductive performance. Black rhino diet breadth increases with vegetation productivity (NDVI), whereas zebra diet breadth peaks at intermediate NDVI. Black rhino diets associated with higher vegetation productivity have less acacia (Fabaceae: Vachellia and Senegalia spp.) and more grass suggesting that acacia are fallback foods, upending conventional assumptions. Larger dietary shifts are associated with longer calving intervals. Grevy's zebra diets in high rainfall areas are consistently grass-dominated, whereas in arid areas they primarily consume legumes during low vegetation productivity periods. Whilst microbiome composition between individuals is affected by the environment, and diet composition in black rhino, seasonal dietary shifts do not drive commensurate microbiome shifts. Documenting diet shifts across ecological gradients can increase the effectiveness of conservation by informing habitat suitability models and improving understanding of responses to resource limitation.


Assuntos
Equidae , Herbivoria , Humanos , Animais , Quênia , Equidae/fisiologia , Reprodução , Dieta
2.
PLoS Genet ; 18(4): e1010099, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446841

RESUMO

East Coast fever, a tick-borne cattle disease caused by the Theileria parva parasite, is among the biggest natural killers of cattle in East Africa, leading to over 1 million deaths annually. Here we report on the genetic analysis of a cohort of Bos indicus (Boran) cattle demonstrating heritable tolerance to infection with T. parva (h2 = 0.65, s.e. 0.57). Through a linkage analysis we identify a 6 Mb genomic region on bovine chromosome 15 that is significantly associated with survival outcome following T. parva exposure. Testing this locus in an independent cohort of animals replicates this association with survival following T. parva infection. A stop gained variant in a paralogue of the FAF1 gene in this region was found to be highly associated with survival across both related and unrelated animals, with only one of the 20 homozygote carriers (T/T) of this change succumbing to the disease in contrast to 44 out of 97 animals homozygote for the reference allele (C/C). Consequently, we present a genetic locus linked to tolerance of one of Africa's most important cattle diseases, raising the promise of marker-assisted selection for cattle that are less susceptible to infection by T. parva.


Assuntos
Doenças dos Bovinos , Theileria parva , Theileria , Theileriose , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Animais , Proteínas Reguladoras de Apoptose/genética , Bovinos , Doenças dos Bovinos/genética , Humanos , Theileria/genética , Theileria parva/genética , Theileriose/genética , Theileriose/parasitologia
3.
BMC Infect Dis ; 20(1): 504, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660437

RESUMO

BACKGROUND: Kenya introduced the monovalent G1P [8] Rotarix® vaccine into the infant immunization schedule in July 2014. We examined trends in rotavirus group A (RVA) genotype distribution pre- (January 2010-June 2014) and post- (July 2014-December 2018) RVA vaccine introduction. METHODS: Stool samples were collected from children aged < 13 years from four surveillance sites across Kenya: Kilifi County Hospital, Tabitha Clinic Nairobi, Lwak Mission Hospital, and Siaya County Referral Hospital (children aged < 5 years only). Samples were screened for RVA using enzyme linked immunosorbent assay (ELISA) and VP7 and VP4 genes sequenced to infer genotypes. RESULTS: We genotyped 614 samples in pre-vaccine and 261 in post-vaccine introduction periods. During the pre-vaccine introduction period, the most frequent RVA genotypes were G1P [8] (45.8%), G8P [4] (15.8%), G9P [8] (13.2%), G2P [4] (7.0%) and G3P [6] (3.1%). In the post-vaccine introduction period, the most frequent genotypes were G1P [8] (52.1%), G2P [4] (20.7%) and G3P [8] (16.1%). Predominant genotypes varied by year and site in both pre and post-vaccine periods. Temporal genotype patterns showed an increase in prevalence of vaccine heterotypic genotypes, such as the commonly DS-1-like G2P [4] (7.0 to 20.7%, P < .001) and G3P [8] (1.3 to 16.1%, P < .001) genotypes in the post-vaccine introduction period. Additionally, we observed a decline in prevalence of genotypes G8P [4] (15.8 to 0.4%, P < .001) and G9P [8] (13.2 to 5.4%, P < .001) in the post-vaccine introduction period. Phylogenetic analysis of genotype G1P [8], revealed circulation of strains of lineages G1-I, G1-II and P [8]-1, P [8]-III and P [8]-IV. Considerable genetic diversity was observed between the pre and post-vaccine strains, evidenced by distinct clusters. CONCLUSION: Genotype prevalence varied from before to after vaccine introduction. Such observations emphasize the need for long-term surveillance to monitor vaccine impact. These changes may represent natural secular variation or possible immuno-epidemiological changes arising from the introduction of the vaccine. Full genome sequencing could provide insights into post-vaccine evolutionary pressures and antigenic diversity.


Assuntos
Genótipo , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/uso terapêutico , Rotavirus/genética , Rotavirus/imunologia , Vacinação , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Fezes/virologia , Feminino , Gastroenterite/etiologia , Humanos , Esquemas de Imunização , Lactente , Quênia/epidemiologia , Masculino , Filogenia , Prevalência , Infecções por Rotavirus/virologia , Vacinas contra Rotavirus/efeitos adversos , Vacinas contra Rotavirus/imunologia , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico
4.
Clin Infect Dis ; 70(11): 2298-2305, 2020 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31326980

RESUMO

BACKGROUND: Rotavirus remains a leading cause of pediatric diarrheal illness and death worldwide. Data on rotavirus vaccine effectiveness in sub-Saharan Africa are limited. Kenya introduced monovalent rotavirus vaccine (RV1) in July 2014. We assessed RV1 effectiveness against rotavirus-associated hospitalization in Kenyan children. METHODS: Between July 2014 and December 2017, we conducted surveillance for acute gastroenteritis (AGE) in 3 Kenyan hospitals. From children age-eligible for ≥1 RV1 dose, with stool tested for rotavirus and confirmed vaccination history we compared RV1 coverage among rotavirus positive (cases) vs rotavirus negative (controls) using multivariable logistic regression and calculated effectiveness based on adjusted odds ratio. RESULTS: Among 677 eligible children, 110 (16%) were rotavirus positive. Vaccination data were available for 91 (83%) cases; 51 (56%) had 2 RV1 doses and 33 (36%) 0 doses. Among 567 controls, 418 (74%) had vaccination data; 308 (74%) had 2 doses and 69 (16%) 0 doses. Overall 2-dose effectiveness was 64% (95% confidence interval [CI], 35%-80%); effectiveness was 67% (95% CI, 30%-84%) for children aged <12 months and 72% (95% CI, 10%-91%) for children aged ≥12 months. Significant effectiveness was seen in children with normal weight for age, length/height for age and weight for length/height; however, no protection was found among underweight, stunted, or wasted children. CONCLUSIONS: RV1 in the Kenyan immunization program provides significant protection against rotavirus-associated hospitalization which persisted beyond infancy. Malnutrition appears to diminish vaccine effectiveness. Efforts to improve rotavirus uptake and nutritional status are important to maximize vaccine benefit.


Assuntos
Gastroenterite , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Criança , Gastroenterite/epidemiologia , Gastroenterite/prevenção & controle , Hospitalização , Humanos , Lactente , Quênia/epidemiologia , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Vacinação , Vacinas Atenuadas
5.
J Infect Dis ; 217(11): 1728-1739, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29741740

RESUMO

Background: Human coronavirus NL63 (HCoV-NL63) is a globally endemic pathogen causing mild and severe respiratory tract infections with reinfections occurring repeatedly throughout a lifetime. Methods: Nasal samples were collected in coastal Kenya through community-based and hospital-based surveillance. HCoV-NL63 was detected with multiplex real-time reverse transcription PCR, and positive samples were targeted for nucleotide sequencing of the spike (S) protein. Additionally, paired samples from 25 individuals with evidence of repeat HCoV-NL63 infection were selected for whole-genome virus sequencing. Results: HCoV-NL63 was detected in 1.3% (75/5573) of child pneumonia admissions. Two HCoV-NL63 genotypes circulated in Kilifi between 2008 and 2014. Full genome sequences formed a monophyletic clade closely related to contemporary HCoV-NL63 from other global locations. An unexpected pattern of repeat infections was observed with some individuals showing higher viral titers during their second infection. Similar patterns for 2 other endemic coronaviruses, HCoV-229E and HCoV-OC43, were observed. Repeat infections by HCoV-NL63 were not accompanied by detectable genotype switching. Conclusions: In this coastal Kenya setting, HCoV-NL63 exhibited low prevalence in hospital pediatric pneumonia admissions. Clade persistence with low genetic diversity suggest limited immune selection, and absence of detectable clade switching in reinfections indicates initial exposure was insufficient to elicit a protective immune response.


Assuntos
Infecções por Coronavirus/epidemiologia , Coronavirus Humano NL63/genética , Adolescente , Adulto , Evolução Biológica , Criança , Pré-Escolar , Infecções por Coronavirus/virologia , Coronavirus Humano OC43/genética , Feminino , Hospitalização , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Masculino , Epidemiologia Molecular , Filogenia , Prevalência , Estudos Prospectivos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Adulto Jovem
6.
Wellcome Open Res ; 3: 150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31020048

RESUMO

Background: Kenya introduced the monovalent Rotarix® rotavirus group A (RVA) vaccine nationally in mid-2014.  Long-term surveillance data is important prior to wide-scale vaccine use to assess the impact on disease and to investigate the occurrence of heterotypic strains arising through immune selection. This report presents baseline data on RVA genotype circulation patterns and intra-genotype genetic diversity over a 7-year period in the pre-vaccine era in Kilifi, Kenya, from 2002 to 2004 and from 2010 to 2013. Methods: A total of 745 RVA strains identified in children admitted with acute gastroenteritis to a referral hospital in Coastal Kenya, were sequenced using the di-deoxy sequencing method in the VP4 and VP7 genomic segments (encoding P and G proteins, respectively). Sequencing successfully generated 569 (76%) and 572 (77%) consensus sequences for the VP4 and VP7 genes respectively. G and P genotypes were determined by use of BLAST and the online RotaC v2 RVA classification tool. Results: The most common GP combination was G1P[8] (51%), similar to the Rotarix® strain, followed by G9P[8] (15%) , G8P[4] (14%) and G2P[4] (5%).  Unusual GP combinations-G1P[4], G2P[8], G3P[4,6], G8P[8,14], and G12P[4,6,8]-were observed at frequencies of <5%. Phylogenetic analysis showed that the infections were caused by both locally persistent strains as evidenced by divergence of local strains occurring over multiple seasons from the global ones, and newly introduced strains, which were closely related to global strains. The circulating RVA diversity showed temporal fluctuations both season by season and over the longer-term. None of the unusual strains increased in frequency over the observation period.   Conclusions: The circulating RVA diversity showed temporal fluctuations with several unusual strains recorded, which rarely caused major outbreaks.  These data will be useful in interpreting genotype patterns observed in the region during the vaccine era.

7.
BMC Infect Dis ; 16: 301, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27316548

RESUMO

BACKGROUND: Human metapneumovirus (HMPV) is an important global cause of severe acute respiratory infections in young children and the elderly. The epidemiology of HMPV in sub-Saharan Africa is poorly described and factors that allow its recurrent epidemics in communities not understood. METHODS: We undertook paediatric inpatient surveillance for HMPV in Kilifi County Hospital (KCH) of Coastal Kenya between 2007 and 2011. Nasopharyngeal samples collected from children aged 1 day-59 months admitted with severe or very severe pneumonia, were tested for HMPV using real-time polymerase chain reaction (RT-PCR). Partial nucleotide sequences of the attachment (G) and fusion (F) surface proteins of positive samples were determined and phylogenetically analyzed. RESULTS: HMPV was detected in 4.8 % (160/3320) of children [73.8 % (118/160) of these less than one year of age], ranging between 2.9 and 8.8 % each year over the 5 years of study. HMPV infections were seasonal in occurrence, with cases predominant in the months of November through April. These months frequently coincided with low rainfall, high temperature and low relative humidity in the location. Phylogenetic analysis of partial F and G sequences revealed three subgroups of HMPV, A2 (74 %, 91/123), B1 (3.2 %, 4/123) and B2 (22.8 %, 28/123) in circulation, with subgroup A2 predominant in majority of the epidemic seasons. Comparison of G sequences (local and global) provided a greater phylogenetic resolution over comparison of F sequences and indicated presence of probable multiple G antigenic variants within the subgroups due to differences in amino acid sequence, encoded protein length and glycosylation patterns. CONCLUSION: The present study reveals HMPV is an important seasonal contributor to respiratory disease hospitalization in coastal Kenya, with an evolutionary pattern closely relating to that of respiratory syncytial virus.


Assuntos
Metapneumovirus/isolamento & purificação , Infecções por Paramyxoviridae/epidemiologia , Pneumonia/virologia , Sequência de Aminoácidos , Variação Antigênica , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Masculino , Metapneumovirus/genética , Nasofaringe/virologia , Infecções por Paramyxoviridae/virologia , Filogenia , Pneumonia/epidemiologia , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/epidemiologia , Estações do Ano
8.
J Infect Dis ; 206 Suppl 1: S61-7, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23169974

RESUMO

BACKGROUND: Influenza data gaps in sub-Saharan Africa include incidence, case fatality, seasonal patterns, and associations with prevalent disorders. METHODS: Nasopharyngeal samples from children aged <12 years who were admitted to Kilifi District Hospital during 2007-2010 with severe or very severe pneumonia and resided in the local demographic surveillance system were screened for influenza A, B, and C viruses by molecular methods. Outpatient children provided comparative data. RESULTS: Of 2002 admissions, influenza A virus infection was diagnosed in 3.5% (71), influenza B virus infection, in 0.9% (19); and influenza C virus infection, in 0.8% (11 of 1404 tested). Four patients with influenza died. Among outpatients, 13 of 331 (3.9%) with acute respiratory infection and 1 of 196 without acute respiratory infection were influenza positive. The annual incidence of severe or very severe pneumonia, of influenza (any type), and of influenza A, was 1321, 60, and 43 cases per 100,000 <5 years of age, respectively. Peak occurrence was in quarters 3-4 each year, and approximately 50% of cases involved infants: temporal association with bacteremia was absent. Hypoxia was more frequent among pneumonia cases involving influenza (odds ratio, 1.78; 95% confidence interval, 1.04-1.96). Influenza A virus subtypes were seasonal H3N2 (57%), seasonal H1N1 (12%), and 2009 pandemic H1N1 (7%). CONCLUSIONS: The burden of influenza was small during 2007-2010 in this pediatric hospital in Kenya. Influenza A virus subtype H3N2 predominated, and 2009 pandemic influenza A virus subtype H1N1 had little impact.


Assuntos
/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Criança , Pré-Escolar , Feminino , Hospitalização , Hospitais de Distrito , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Masculino , Nasofaringe/virologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...